

An Automated Method for Extracting Spatially Varying

Time-Dependent Quantities From an ALEGRA Simulation
Using VisIt Visualization Software

by Matthew J. Coppinger

ARL-TN-0617 July 2014

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5069

ARL-TN-0617 July 2014

An Automated Method for Extracting Spatially Varying
Time-Dependent Quantities From an ALEGRA Simulation

Using VisIt Visualization Software

Matthew J. Coppinger

Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

July 2014
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

August 2013–January 2014
 4. TITLE AND SUBTITLE

An Automated Method for Extracting Spatially Varying Time-Dependent
Quantities From an ALEGRA Simulation Using VisIt Visualization Software

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Matthew J. Coppinger
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-WMP-A
Aberdeen Proving Ground, MD 21005-5069

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TN-0617

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Analysis of the various transient quantities contained in an ALEGRA simulation, including material properties, scalar variables,
and tensor variables, can be an arduous task. In particular, the extraction of specific time-dependent quantities traveling through
an Eulerian mesh is time consuming. This report documents an automated method of extracting transient quantities that vary
spatially from an ALEGRA simulation using a VisIt macro written in the Python programming language. Plots of data extracted
using this method are presented.

15. SUBJECT TERMS

modeling, simulation, VisIt, visualization software, depth of penetration, DOP, data extraction

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

22

19a. NAME OF RESPONSIBLE PERSON
Matthew J. Coppinger

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)
410-278-0815

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

Acknowledgments v

1. Introduction 1

2. Macro Description and Implementation 1

3. Conclusion 8

Appendix. Full Python Macro for Extracting the Depth of Penetration and the
Temperature as Functions of Time 9

Distribution List 13

 iv

List of Figures

Figure 1. Flowchart depicting the basic algorithm of the macro. ..2

Figure 2. Several snapshots of single frames of the simulation illustrating the sign convention
used for the DOP. Until the tip of the SCJ reaches the RHA, the DOP is negative,
indicating the distance that remains for the tip to travel prior to reaching the RHA.6

Figure 3. Plot of the DOP versus time for an SCJ as recorded by the VisIt macro. Note that
the DOP is negative until the tip of the SCJ reaches the front face of the RHA.7

Figure 4. The variation in temperature of the tip of an SCJ with respect to its distance from
the front face of the RHA as recorded by the VisIt macro. ...8

 v

Acknowledgments

The author gratefully acknowledges technical support from John Niederhaus and other members
of the ALEGRA development team. The author would also like to thank Drs. W. Casey Uhlig
and Andrew J. Porwitzky (Applied Physics Branch, Weapons and Materials Research
Directorate) for meaningful discussions.

 vi

INTENTIONALLY LEFT BLANK.

1

1. Introduction

The computational shock multiphysics code ALEGRA is capable of performing
multidimensional numerical simulations within an arbitrary Lagrangian-Eulerian framework.1
ALEGRA simulations produce an abundance of information on various transient quantities,
including material properties, scalar variables, and tensor variables. The analysis of specific
time-dependent quantities, however, can be difficult. This problem is compounded when the
measurement location of the quantity of interest is not fixed. Often, large ALEGRA simulations
require massively parallel processing. When massively parallel processing is employed,
specialized methods of assembling and then extracting information from an output database are
required for post-processing. Utility scripts, such as the specialized history viewer (SHIV), can
be used to analyze the transient data of a material characteristic, a global variable, or a particular
tracer location via a HISPLT database2; however, monitoring particular tracer locations or global
material characteristics in many cases is not sufficient to capture the transient quantities of a
material traveling through an Eulerian mesh. Visualization software such as VisIt presents an
alternative method to examine data through the use of EXODUS databases.3 In addition, VisIt
visualization software allows the user to write macros that can assist in automating the analysis
of complex data. This report details an automated method of extracting transient quantities that
vary spatially from an EXODUS database using a VisIt macro written in the Python
programming language.

2. Macro Description and Implementation

The impetus for creating the macro described in this report came from a repeated analysis of the
simulated depth of penetration (DOP) of a shaped charge jet (SCJ). Accordingly, the macro
considered here will be based on extracting the location and temperature of the tip of an SCJ as it
approaches and penetrates rolled homogenous armor (RHA). The macro was written for VisIt
version 2.5.0, and the simulation that was analyzed used a two-dimensional (2-D) axisymmetric
geometry with eight elements per millimeter. A 2-D geometry simplifies the data extraction
somewhat, but with a small amount of effort, the technique described here can easily be extended
to more complicated geometries.

1 Robinson, A. C.; Carroll, S. K.; Drake, R. R.; Hensinger, D. M.; Labreche, D. A.; Love, E.; Luchini, C. B.; Mosso, S. J.;
Niederhaus, J. H. J.; Petney, S. V.; Rider, W. J.; Strack, E.; Weirs, V. G.; Wong, M. K.; Voth, T. E.; Ober, C. C.; Haill, T. A.
ALEGRA User Manual: Version 5.0.; SAND2010-4796; Sandia National Laboratory: Albuquerque, NM, 2010.
2 Thompson, S. L.; Kmetyk, L. N. HISPLT, A Time-History Graphics; Sandia National Laboratories: Albuquerque, NM,
September 1991. Revised April 1994.
3 Schoof, L. A.; Yarberry, V. R. EXODUS II: A Finite Element Data; Sandia National Laboratories: Albuquerque, NM, 1994.

2

All of the information extracted by this macro can also be extracted manually by interactively
selecting a zone or node of interest using VisIt’s pick mode. Building a set of spatially varying
data as a function of time using this method quickly becomes tedious because the user must
select a different node or zone at each timestep and then record the location and temperature.
Additionally, VisIt has built-in functionality that allows a user to query certain values over time.

The query-over-time function is useful for monitoring the value of a variable at a specific cell or
examining global maxima and minima over a range of timesteps. For example, the query-over-
time function could be used if one were interested in knowing the density of a particular cell at
each timestep. Queries over time, however, cannot easily track the location of a particular
material and then return information on its variables. Fortunately, VisIt allows user-defined
macros that, when properly implemented, can both track the location of a particular material and
export the location and temperature. Again, the objective of the Python macro described here
was straightforward: record the DOP and temperature of the SCJ tip at each timestep. The
flowchart depicted in figure 1 illustrates the desired algorithm. The starting point for the macro
was a pseudocolor density plot of the 2-D axisymmetric simulation at the initial timestep.

Figure 1. Flowchart depicting the basic algorithm of the macro.

3

For clarity, the code discussion that follows is broken into subsections. Each subsection gives an
overview of a block of the code that performs a simple task. The following line numbers are for
discussion only and are not part of the actual script. These are meant to serve as reference points
to assist in describing the syntax. To facilitate the full use or modification of the macro by
interested users, the macro has been included in its entirety in the appendix.

The first block of code (lines 1–3) determines the number of timesteps in a particular simulation
and then outputs the value to the command line interface. Occasionally, complex ALEGRA
simulations have been known to crash prior to reaching the ultimate desired length of time. If the
total number of intended timesteps is known to the user, the output can serve as a useful quick-
check to verify whether or not a simulation ran to completion.

1 # Determine the temporal extent of the simulation
2 Total_Timesteps = TimeSliderGetNStates()
3 print "Total number of timesteps = ", Total_Timesteps

The second block of code (lines 4–34) performs one of the fundamental tasks in this evaluation:
it reads and stores the location of a particular material parameter. In this case the material
parameter read is the temperature of the RHA along the axis. The location that is stored as a
variable is the front face of the RHA, which is used as a means of identifying the location of the
surface of the target. To perform this task, a new window is opened, and the temperature of the
RHA (material 7) is plotted (lines 7–11). The maximum and minimum y-coordinates of the
simulation are then determined on lines 12 and 13. Because this simulation was axisymmetric,
the trajectory of the SCJ was known a priori to be along the y-axis. Once the maximum and
minimum coordinates are known, the Lineout function (line 18) is called using the maximum and
minimum points along the y-axis as inputs. In an additional window, the Lineout function plots
the default variable, i.e., the temperature, along with the coordinates. After these variables have
been plotted, the GetPlotInformation function reads the simulation data into user-defined
variables so they can be used in calculations or stored to be exported. The code then selects the
location of the first nonzero value of the temperature as the front face of the RHA and records
the coordinates. This location is used as the origin to measure the DOP. Finally, once the
appropriate data has been read, the two plot windows that were opened by the RHA temperature
plot and the Lineout function are closed.

 4 # Identify a reference location for the measurement.
 5 # In this case, the outer edge of the RHA (material 7)
 6 SetTimeSliderState(0)
 7 AddWindow()
 8 SetActiveWindow(2)
 9 AddPlot("Pseudocolor", "TEMPERATURE_7", 1, 0)
10 ResetView()
11 DrawPlots()
12 View2DAtts = GetView2D()

4

13 D = list(View2DAtts.windowCoords)
14 p0 = (0, D[2])
15 p1 = (0, D[3])
16 DefineScalarExpression("x", "coord(Mesh) [0]")
17 DefineScalarExpression("y", "coord(Mesh) [1]")
18 Lineout(p0, p1 , ("default", "x", "y"))
19 SetActiveWindow(3)
20 SetActivePlots(0)
21 Temperature = GetPlotInformation()["Curve"]
22 SetActivePlots(l)
23 x = GetPlotInformation()["Curve"]
24 SetActivePlots(2)
25 y = GetPlotInformation()["Curve"]
26 Temperature_RHA = list(Temperature)

27 ct = 1
28 while Temperature_RHA[ct] == 0:
29 ct = ct+2
30 RHA_start = y[ct]
31 print "RHA starting location = ", RHA_start
32 DeleteWindow()
33 SetActiveWindow(2)
34 DeleteWindow()

The next block of code (lines 35–78) loops through each output timestep in the simulation
Exodus file. Similar to the method used in the previous block of code, the temperature variable is
used here. The DOP, time, and tip temperatures are all stored as list variables. Again, for the
purposes of measuring the DOP, the front face of the RHA is used as a reference. Thus, as
illustrated in figure 2, the DOP values are negative until the SCJ tip reaches the RHA. At each
timestep, the current tip temperature, DOP, and simulation time are appended to the
corresponding list variable.

35 # Loop through the meat of the analysis. At each timestep,
36 # calculate the depth of penetration, the temperature, and
37 # record the along with the time
38 DOP_List = range(Total_Timesteps)
39 Time_List = range(Total_Timesteps)
40 Tip_Temp_List = range(Total_Timesteps)
41 for i in range(Total_Timesteps):
42 SetTimeSliderState(i)
43 AddWindow()
44 SetActiveWindow(2)
45 AddPlot("Pseudocolor", "TEMPERATURE_1", 1, 0)
46 ResetView()
47 DrawPlots()
48 View2DAtts = GetView2D()

5

49 D = list(View2DAtts.windowCoords)
50 pl = (0, D[2])
51 p0 = (0, D[3])
52 DefineScalarExpression("x", "coord(Mesh)[0]")
53 DefineScalarExpression("y", "coord(Mesh)[1]")
54 Lineout(p0, p1, ("default", "x", "y"))
55 SetActiveWindow(3)
56 SetActivePlots(0)
57 Temperature = GetPlotInformation () ["Curve"]
58 SetActivePlots(l)
59 x = GetPlotInformation () ["Curve"]
60 SetActivePlots(2)
61 y = GetPlotInformation () ["Curve"]
62 Temperature_Cu = list(Temperature)
63 ct = 1
64 while Temperature_Cu[ct] == 0:
65 ct = ct+2
66 Cu_end = y[ct]
67 print "Cu tip ending location =" Cu end
68 DeleteWindow()
69 SetActiveWindow(2)
70 DeleteWindow()
71 DOP = Cu end - RHA start
72 print "Current depth of penetration ", DOP
73 DOP_List[i] = DOP
74 print "Current tip temperature = ", Temperature_Cu[ct]
75 Tip_Temp_List[i] = Temperature_Cu[ct]
76 Query("Time")
77 Time_List[i] = GetQueryOutputValue()
78 print "Final depth of penetration = ", DOP, "\n"

6

Figure 2. Several snapshots of single frames of the simulation illustrating the sign convention used for the
DOP. Until the tip of the SCJ reaches the RHA, the DOP is negative, indicating the distance that
remains for the tip to travel prior to reaching the RHA.

The final portion of the code is a method to save the three list variables into a single text file
(lines 79–92). This text file can be easily imported into a spreadsheet or graphing software for
analysis. In the specified directory, the open function on line 80 will create a new file,
filename.txt, if it does not exist or overwrite an existing file with that name. In order to output
the variables, each list is converted to a string. When this conversion occurs, brackets are
automatically included as characters in the string. To simplify the data processing, prior to
writing the data to the text file the macro removes the brackets. (Note: The second argument in
the replace field of the string variables on lines 82, 83, 85, 86, 88, and 89 is a single open quote
directly followed by a single close quote.)

79 # Output the time and the DOP
80 f = open('/home/username/Desktop/filename.txt', 'w')
81 S1 = str(Time_List)
82 S1 = S1.replace('[', '')
83 S1 = S1.replace(']', '')
84 S2 = str(DOP_List)
85 S2 = S2.replace('[', '')
86 S2 = S2.replace(']', '')
87 S3 = str(Tip_Temp_List)
88 S3 = S3. replace('[', '')
89 S3 = S3. replace(']', '')

7

90 output = S1 + "\n" + S2 + "\n" + S3
91 f.write(output)
92 f.close ()

Once the data have been imported into a spreadsheet or graphing software, they can easily be
plotted. Figures 3 and 4 illustrate example plots of the data output by the macro. Figure 3 is a
plot of the DOP versus time, and figure 4 is a plot of the temperature versus the SJC tip location
relative to the RHA.

Figure 3. Plot of the DOP versus time for an SCJ as recorded by the VisIt macro. Note

that the DOP is negative until the tip of the SCJ reaches the front face of the
RHA.

8

Figure 4. The variation in temperature of the tip of an SCJ with respect to its distance

from the front face of the RHA as recorded by the VisIt macro.

3. Conclusion

In summary, this report describes a macro that automates the extraction of data from ALEGRA
simulations using the VisIt visualization software. Although the analysis discussed here was for a
2-D axisymmetric simulation, the basic function of the macro can be generalized for any
simulation. In addition, automating the extraction of temporally dependent material parameters
provides the added benefit of extrapolating the endpoint should the simulation not run to
completion. The macro described in this report should provide a valuable starting point for any
ALEGRA user who would like to automatically extract temporally and spatially varying data
from a simulation.

9

Appendix. Full Python Macro for Extracting the Depth of Penetration and the
Temperature as Functions of Time

 This appendix appears in its original form, without editorial change.

10

Determine the temporal extent of the simulation
Total_Timesteps = TimeSliderGetNStates()
print "Total number of timesteps = ", Total_Timesteps

Identify a reference location for the measurement.
In this case, the outer edge of the RHA (material 7)
SetTimeSliderState(0)
AddWindow()
SetActiveWindow(2)
AddPlot("Pseudocolor", "TEMPERATURE_7", 1, 0)
ResetView()
DrawPlots()
View2DAtts = GetView2D()
D = list(View2DAtts.windowCoords)
p0 = (0, D[2])
p1 = (0, D[3])
DefineScalarExpression("x", "coord{Mesh) [0]")
DefineScalarExpression("y", "coord{Mesh) [1]")
Lineout(p0, p1 , ("default", "x", "y"))
SetActiveWindow(3)
SetActivePlots(0)
Temperature = GetPlotInformation()["Curve"]
SetActivePlots(l)
x = GetPlotInformation()["Curve"]
SetActivePlots(2)
y = GetPlotInformation()["Curve"]
Temperature_RHA = list(Temperature)

ct = 1
while Temperature_RHA[ct] == 0:
 ct = ct+2
RHA_start = y[ct]
print "RHA starting location = ", RHA_start
DeleteWindow()
SetActiveWindow(2)
DeleteWindow()

Loop through the meat of the analysis. At each timestep,
calculate the depth of penetration, the temperature, and
record them along with the time
DOP_List = range(Total_Timesteps)
Time_List = range(Total_Timesteps)
Tip_Temp_List = range(Total_Timesteps)
for i in range(Total_Timesteps):
 SetTimeSliderState(i)
 AddWindow()

11

 SetActiveWindow(2)
 AddPlot("Pseudocolor", "TEMPERATURE_1", 1, 0)
 ResetView()
 DrawPlots()
 View2DAtts = GetView2D()
 D = list(View2DAtts.windowCoords)
 pl = (0, D[2])
 p0 = (0, D[3])
 DefineScalarExpression("x", "coord(Mesh)[0]")
 DefineScalarExpression("y", "coord(Mesh)[1]")
 Lineout(p0, p1, ("default", "x", "y"))
 SetActiveWindow(3)
 SetActivePlots(0)
 Temperature = GetPlotInformation () ["Curve"]
 SetActivePlots(l)
 x = GetPlotInformation () ["Curve"]
 SetActivePlots(2)
 y = GetPlotInformation () ["Curve"]
 Temperature_Cu = list(Temperature)
 ct = 1
 while Temperature_Cu[ct] == 0:

ct = ct+2
 Cu_end = y[ct]
 print "Cu tip ending location =" Cu end
 DeleteWindow()
 SetActiveWindow(2)
 DeleteWindow()
 DOP = Cu end - RHA start
 print "Current depth of penetration ", DOP
 DOP_List[i] = DOP
 print "Current tip temperature = ", Temperature_Cu[ct]
 Tip_Temp_List[i] = Temperature_Cu[ct]
 Query("Time")
 Time_List[i] = GetQueryOutputValue()

print "Final depth of penetration = ", DOP, "\n"
Output the time and the DOP
f = open('/home/username/Desktop/filename.csv', 'r+')
S1 = str(Time_List)
S1 = S1.replace('[', '')
S1 = S1.replace(']', '')
S2 = str(DOP_List)
S2 = S2.replace('[', '')
S2 = S2.replace(']', '')
S3 = str(Tip_Temp_List)
S3 = S3. replace('[', '')

12

S3 = S3. replace(']', '')
output = S1 + "\n" + S2 + "\n" + S3
f.write(output)
f.close ()

13

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 3 SANDIA NTL LAB
 (PDF) E STRACK
 J NIEDERHAUS
 S PETNEY

 36 DIR USARL
 (PDF) RDRL WM
 R DONEY
 W WINNER
 RDRL WMP
 D LYON
 S SCHOENFELD
 RDRL WMP A
 P BERNING
 M COPPINGER
 J FLENIKEN
 C HUMMER
 R MUDD
 A PORWITZKY
 J POWELL
 W UHLIG
 RDRL WMP B
 C HOPPEL
 RDRL WMP C
 R BECKER
 S BILYK
 T BJERKE
 B LEAVY
 S SEGLETES
 C WILLIAMS
 RDRL WMP D
 A BARD
 S HUG
 M KEELE
 D KLEPONIS
 H MEYER
 F MURPHY
 J RUNYEON
 G VUNNI
 S SCHRAML
 M ZELLNER

 RDRL WMP E
 D HACKBARTH
 P BARTKOWSKI
 D HORNBAKER
 J HOUSKAMP
 P SWOBODA
 RDRL WMP F
 N GNIAZDOWSKI
 RDRL WMP G
 N ELDREDGE

14

INTENTIONALLY LEFT BLANK.

	Contents
	List of Figures
	Acknowledgments
	1. Introduction
	2. Macro Description and Implementation
	3. Conclusion
	Appendix. Full Python Macro for Extracting the Depth of Penetration and the Temperature as Functions of Time3F(

